Nand2Tetris

The Tetris to Nand view

Why this part of the course?

We want to understand how run-of-the-mill computer systems work
To become better at programming them

At different levels in their stack

Tetris

Example application

Very interactive, computer should react fast to user input
Both from peripherals (keyboard, mouse, touchscreen)

And from application logic (react to current tetris construction)

Behind the screen :)

An Operating System runs the Tetris application, meaning:

The OS abstracts away the hardware capabilities in a standardized set of
functionalities (for instance, input/output, access to memory)

The application developer has used these functionalities to write the source code
The source code has been compiled to lower level code (e.g., binary code)
The OS loads the binary code into memory

Execution starts

Von Neumann Architecture

Stored-program computer — instruction set stored in main memory, executed by the CPU

Central
Processing Unit I/O Devices

Control Unit

Main
memory

Disk
Arithmetic
logical unit

Registers

|I Bus

Central Processing Unit (CPU)

Control Unit
e fetches instructions from main memory
e determines their type

Arithmetic Logical Unit
e Performs operations (addition, subtraction, Boolean AND etc)

Registers
e Small, high-speed internal memory
e Each has a certain function, typically same size
e Program Counter — points at the next instruction that needs to be fetched
e Instruction Register — currently executed instruction

Arithmetic Logical Unit

e A and B are fed from registers
e The result is stored in a register

integer Integer
Operand Operand
v
Status A 2
Status

Opcode "fl"'

Integer

Result

https://en.wikipedia.org/wiki/Central _processing_unit

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit

Some gate types

a b out

AND T

DS

e We recognize on the right side truth tables I N

e These gates are put togetherin a

. a | b | out
combinatorial circuit, controlled via a control p— =5l a

H I a o1 1
line and a multiplexor a :D ou O 11

e A multiplexor outputs one of multiple inputs T|4:] o
a | b | out

XOR s 1ol o

a out 0|1 1

2 2£ 10| 1

1| 1 0

NOT in | out

in —>O— out 0 1

1 0

http://minnie.tuhs.org/CompArch/Tutes/week02.html

http://minnie.tuhs.org/CompArch/Tutes/week02.html
http://minnie.tuhs.org/CompArch/Tutes/week02.html

(Typical) Instruction types

e Regqister-register
o Fetch operands from registers to the ALU input registers
o Perform data path cycle
m Run the two operands through ALU
m Store the result in a register

e Register-memory
o Units of data are fetched from memory to registers
o In subsequent instructions, they become ALU inputs

(Typical) Instruction Execution

Fetch next instruction into the IR

PC = following instruction

Determine type of current instruction

If instruction uses units in data from memory, determine its location
If needed, fetch the unit of data into a CPU register

Execute instruction

Repeat from step 1.

NS O~

Example nttp://www.hanshg.net/ones-and-zeros.html

movl $42, %eax #x86 instruction moving integer 42 to register eax
ret

1011 1 000 00101010 00000000 00000000 00000000
Opcode Width Register 42

Big Endian Byte Order: The most significant byte (the "big end") of the data is placed at the byte with
the lowest address. The rest of the data is placed in order in the next three bytes in memory.

Little Endian Byte Order: The least significant byte (the "little end") of the data is placed at the byte
with the lowest address. The rest of the data is placed in order in the next three bytes in memory.

http://www.hanshq.net/ones-and-zeros.html

Nand2Tetris

Point your browsers to http://www.nand2tetris.org/software.php

e Install nand2tetris
e Open the Hardware Simulator Tutorial

Note that we may distinguish nuances in CS related to:
Emulate — imitate the internal mechanisms

Simulate — imitate the behaviour

http://www.nand2tetris.org/software.php

