
Amsterdam University College

Advanced Programming

Assignment 4

The goal of this assignment is to guide you into writing an interpreter for a
fragment of a (conceptually improved) version of C.

1 General Description

The language will have the following main characteristics:

• Paradigm: The language will be imperative with a clear distinction be-
tween expressions and commands, i.e., no command will return a value
and no expression will have side effects.

• Expressions: The language will provide ways of dealing with basic arith-
metical and boolean expressions (including a conditional ternary opera-
tor).

• Commands: Our language will be block-based, i.e., a program consists
of possibly nested blocks of commands and procedures. The main data
structure of our language will be variables (no pure names will be allowed).
The language will support assignment, conditional commands, while loops,
and procedures.

• Scoping Rule and Parameter Passing: The scoping rule for proce-
dures should be static, and parameter passing should be by value.

• Pointers: Our language will also support simple dynamical memory man-
agement via pointers, see, e.g., this link if you did not program with
pointers before. The language will then offer commands to allocate and
de-allocate memory, see below for a more precise description of this.

1

https://en.wikipedia.org/wiki/Pointer_(computer_programming)

2 Syntax:

In this assignment we will exclusively work with the abstract syntax and will
avoid dealing with parsing of concrete programs.

The abstract syntax of our language is the following:

Ide :=String

Num :=Integer

Bl :=True|False

Exp :=Int(Num) | Plus(Exp,Exp) | Mult(Exp,Exp) | Minus(Exp)

Bool(Bl) | And(Exp,Exp) | Or(Exp,Exp) | Not(Exp) | Equal(Exp,Exp) |
If(Exp,Exp,Exp) | Deref(Ide) | V al(Ide)

Com :=Assign(Ide,Exp) | While(Exp,Com) | CIf(Exp,Com,Com)

| Procedure(Ide, Listof Ide, Listof Com) | Call(Ide, ListofExp)

| NewPointer(Ide,Exp) | DestroyPointer(Ide)

| UpdatePointerV al(Ide,Exp) | Block(Listof Decl, Listof Com)

| Show(Exp)

Decl :=Decl(Ide,Exp)

3 Expressions:

Concerning expressions we would like to interpret any operation but condi-
tional as strict operations (i.e., eager policy). As usual conditional should be
interpreted as a non-strict operation (i.e., only the relevant expressions are eval-
uated). The expression V al(Ide) should return the content of the variable with
the given identifier (note that, unless val is used as an actual parameter, Ide is
not allowed to be the identifier of a pointer, see below pointers are not express-
ible).

4 Procedures:

Our language offers two syntactic constructs that allow to define and call pro-
cedures:

Procedure(name, formal parameters, body),

which allows to define a new procedure with the given name, formal parameters,
and body. Then a procedure can be called using:

Call(name, actual parameters),

which allows to call the procedure with the given name and values for the
actual parameters.

2

As mentioned before, the scoping rule for procedures should be static (i.e.,
a procedure call should be evaluated in the environment and store where the
procedure was defined). Parameter passing should be by value (i.e., formal
parameters are variables and the values of the actual parameters are assigned to
the formal parameters). As for expressions, the evaluation policy for procedures
should be eager (i.e., all the value of the actual parameters should be computed
before the procedure call is evaluated). Finally note that given that our formal
parameters are variables, the actual parameter can and must evaluate to storable
values.

5 Printing:

In our language we have a special command to print expressible values. The
syntax of this command is:

Show(Exp),

where Exp should be an expression. This command can be used to print the
content of variables which are not pointers as follows:

Show(V al(”x”)),

where “x” is the name of the variable whose content we want to print. If given
Int(n) Show should print n and if given Bool(b) should print b.

6 Pointers:

Our language should implement pointers. Note that pointers in our language
will not be the same as locations. Indeed, locations refer to store cells and are
therefore allocated and de-allocated automatically, pointers will be addresses of
cells stored on a different structure called the heap. The heap is where we store
user-managed memory. The user is allowed to store in the heap only two types
of values (which we call heapable values), Integers and Booleans. Our language
offers the following two commands to create and destroy pointers:

• NewPointer(Ide,Exp): Create a new variable whose content is going to
be a pointer which points to the value of the expression,

• DestroyPointer(Ide): Frees the memory associated to the pointer con-
tained in the variable whose name is the given identifier.

Note that heap-addresses (i.e., pointers) will be stored in variables and cannot
be directly accessed in any way.

Your heap should have a fixed size and we would like to use our heap memory
efficiently, e.g., if space is freed it should be reusable. [Hint: You may want to
keep a list of free cells in your heap.]

Finally to access the value stored in an heap-cell, to access the address of
an heap-cell, and to modify the value of an heap-cell we can use the following
constructs:

3

• Deref(Ide): Assumes that Ide is the name of a variable containing a
pointer. Returns the value in the cell pointed by the pointer.

• V al(Ide): If Ide is the name of a variable containing a pointer returns the
address of the cell pointed by the pointer otherwise returns the value of the
variable. Note again that while Val is used both to inspect the content of
variables and to get the address of a value in the heap (a pointer), it should
not be possible for an expression to return a pointer (i.e., pointers are not
expressible nor heapable nor denotable they should only be storable). This
means that if x is a variable which contains a pointer (e.g., a variable made
using NewPointer(“x”, exp)) then V al(“x”) can only appear on the right
side of assignments or as actual parameter of a procedure and in no other
place.

• UpdatePointerV al(Ide,Exp): Assumes that Ide is the name of a variable
containing a pointer. Updates the cell pointed by the pointer with the
value of Exp.

7 Testing and Submitting Your Code

As usual you should create your Git repository on Forgejo and work there. Your
submission should consist of a file called Interpreter.py which contains the code
of your interpreter.

In addition to submitting to Forgejo you should submit your Interpreter.py
to CodeGrade for automatic grading. To pass this test, your main interpretation
function should have the following signature:

interpret(c : Com),

where Com is the class of commands. This function should interpret the com-
mand c starting with empty environment, empty store, and empty heap.

Finally your program should raise exceptions if the given program does not
follow our specifics, e.g., if we try to print a pointer.

[Hint: If you want you can use the code that we presented in class as your
starting code, but note that that code is not guaranteed to be efficient nor in
the right style (e.g., the code is essentially comment free)].

4

The following is an example of a program written in our abstract syntax:

Block ([Decl (”y” , Int (2))] ,
[NewPointer (”x” , Int (1 0)) ,
NewPointer (”w” , Int (0)) ,

Procedure (”p” , [”z”] ,
[While (Not (Equal (Deref (”z”) , Deref (”x”))) ,
Block ([Decl (”y” , Int (1))] ,

[UpdatePointerVal (”z” , Plus (Deref (”z”) , Val (”y”))) ,
Show(Deref (”z”))]))]) ,

Ca l l (”p” , [Val (”w”)]) ,
Show(Deref (”w”))])

The output that you should obtain when running it using your interpreter is
the following:

1
2
3
4
5
6
7
8
9
10
10

5

	General Description
	Syntax:
	Expressions:
	Procedures:
	Printing:
	Pointers:
	Testing and Submitting Your Code

